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Abstract

The development of practical numerical methods for simulation of partial differential
equations leads to questions of convergence, accuracy (in time and space) and efficiency.
Verification of a computational algorithm includes the process of establishing a conver-
gence theory for the discretized equations. It is well known that the long time behavior
of a system may not be captured even by “convergent” approximating methods and
additional requirements must be placed on the scheme to ensure the discretized equa-
tions capture the correct asymptotic behavior. Even on finite intervals, there are always
uncertainties in the problem data that can be a source of difficulty for accurate simu-
lation of nonlinear problems. These uncertainties lead to uncertainty in the computed
results and should be considered as part of the verification step. This research gives
preliminary results showing how sensitivity analysis can be used to provide a practical
precursor to dynamic transitions and quantify numerical uncertainty in simulations of
nonlinear parabolic partial differential equations.
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1 Summary and Objectives

Research Objective: It is well known that the long time behavior of a nonlinear dynami-
cal system may not be captured even by convergent approximating methods and additional
requirements must be placed on the scheme to ensure the discretized equations capture the
correct asymptotic behavior. This issue is particularly important when one is forced to
use numerical methods to evaluate the asymptotic behavior of a closed-loop control system
when the mathematical model is defined by a nonlinear partial differential equation (PDE).
In addition, using feedback to eliminate or delay transition in fluid flows often requires some
type of mechanism to predict that a transition is about to occur. The recent papers [3], [4],
[5], [21] and [22] provide considerable evidence that, for certain nonlinear systems that occur
in fluid flows, sensitivity analysis can be used to indicate a transition is about to occur.
In [4] and [5] it was shown that this information can be used to determine when to turn
on a controller to prevent transition. This report illustrates that similar sensitivity tools
can also be used to provide insight into the asymptotic behavior of the closed-loop system.
In particular, it is shown that time varying sensitivities can be used to determine when a
numerical simulation is correctly predicting the longtime behavior of the response. In the
cases considered here, the trigger of a transition can be a known parameter (wall rough-
ness, etc.) or an un-modeled uncertainty in the problem data. This includes uncertainty in
parameters, initial data, boundary conditions and forcing terms. These uncertainties in the
problem data lead to uncertainty in the computed results and should be considered as part
of a verification step. In addition, although we do not address this issue here, it has recently
been observed that finite precision arithmetic and sensitivity to parameter uncertainty can
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lead to orders of magnitude errors in simulations of simple nonlinear convection-diffusion
equations (see [1] and [3]). The focus of this report is on a nonlinear reaction-diffusion
equations to illustrate the problem and method. However, we first present a simple ODE
example to illustrate some of the basic ideas.

Collaborators: Dr. John A. Burns of the Interdisciplinary Center for Applied Mathematics
and the Department of Mathematics at Virginia Tech served as the main collaborator for this
work. The results in this report, along with the results that are currently in preparation in
a more extensive manuscript, were the result of an intense two week period of collaboration
between the PI and Dr. Burns and a considerable amount of subsequent communication.
In addition, the ideas for the first example came from the thesis problem and subsequent
work of Dr. John R. Singler of the Mechanical Engineering Department at Oregon State
University. His results and observations for the simple control problem example were quite
useful and much appreciated.

2 Results of Funding

The following sections illustrate the key ideas of how sensitivity analysis can be used to
predict the onset of transition in various numerical simulations. The first example is that of
a simple closed-loop control system, and the second section contains an example of a classical
nonlinear parabolic partial differential equation. In each case, by choosing to examine the
sensitivity of the state variable with respect to a certain parameter, we are able to produce
numerical sensitivity simulations which serve as an indicator that a transition is about to
take place in the behavior of the original state variable.

2.1 A Finite Dimensional Example

We consider a 3D system that is typical of those found in the papers [4], [5], [20], [21],
[25], [26] and [27]. However, we focus on the role that small constant disturbances play in
transition and illustrate how sensitivity information can be used to predict the transition
in these cases. The system is governed by three ordinary differential equations and has the
form

ẋ(t) = A(R)x(t) + ‖x(t)‖Sx(t) + Bu(t) + Dq, x(0) = x0, (2.1)

where A(R) = [ 1

R
A0 + R], A0 < 0 is diagonal and S = −S∗ is skew-adjoint. In particular,

this three dimensional system is defined by

A(R) =





−α/R 1 0
0 −β/R 1
0 0 −γ/R



 , (2.2)

S =





0 −b1 −b2

b1 0 b3

b2 −b3 0



 (2.3)

and

B =





0
0
1



 ,D =





1
1
1



 , (2.4)
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where all constants are positive. Here, q is considered a “small” constant (un-modeled)
disturbance. For the runs here we set α = 0.5, β = 0.75, γ = 1.0, b1 = 1.0, b2 = 0.5 and
b3 = 0.25. The linear operator A(R) is stable for all R > 0 and for the no disturbance
case (i.e. when q = 0) the dynamical system is also dissipative. In particular, the nonlinear
system (2.2)-(2.4) has a compact global attractor. The problem is sensitive to the parameter
q and this sensitivity plays an important role in the transition process.

Let

s(t) ,
∂x(t, q)

∂q
|q=0 =

∂x(t, 0)

∂q
(2.5)

denote the sensitivity of the solution x(t) = x(t, q) at q = 0. It follows that the sensitivity
s(t) satisfies the linear differential equation

ṡ(t) = A(R)s(t) + F (x(t))s(t) + D, s(0) = 0, (2.6)

where

F (x) =

{

‖x‖S + SxxT / ‖x‖ , x 6= 0
0, x = 0

.

Consider the case where x0 = [9, 9, 9]T × 10−6 and q = 5 × 10−8. Figure 1 below
contains the plots of the norms of solution x(t, q) and the sensitivity s(t) (top plot) for
this system. Observe that the solution does not “transition” to the (chaotic) attractor
until t = 175seconds . However, at t = 50seconds the sensitivity s(t) satisfies ‖s‖ > 103.
The vertical red line at t = 50seconds indicates that the sensitivity information provides a
precursor to the upcoming transition long before the transition is observable in the state.
This precursor was used by Singler to determine when to switch on a capturing feedback
controller which is then able to prevent the transition (see [20]).

In the next section we use a similar technique to investigate the numerical simulation
of the longtime behavior of a nonlinear parabolic PDE. However, in the PDE case the
“sensitive” parameter is in the boundary condition which is typical in parabolic diffusion-
convection-reaction equations (see [1], [3], [4], [5], [13], [20] and [21]).

2.2 The Chaffee-Infante Equation

We consider a particular reaction-diffusion equation first studied by Chaffee and Infante
in [9] and [10]. This model is a well understood dissipative dynamical system with a
global attractor consisting of a finite number of fixed points and the corresponding unstable
manifolds (see pages 301 - 306 in [18] for details). In particular, we focus on the partial
differential equation

zt(t, x) = zxx(t, x) + λ(z(t, x) − [z(t, x)]2), 0 < x < π, t > 0 (2.7)

with initial condition
z(0, x) = φ(x), (2.8)

and Dirichlét boundary conditions

z(t, 0) = 0 = z(t, π). (2.9)

Here λ > 1, and in this setting it may be helpful to think of (2.7)-(2.9) as a closed-loop
system that we wish to simulate. It is sufficient to consider the case where λ = 4.1 so that
the following result holds (see page 303 in [18]).
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Figure 1: Norm of x(t) and s(t)

Theorem 2.1. If λ = 4.1, then the system (2.7)-(2.9) has five fixed points φ0(·) ≡ 0, φ+

1
(·),

φ−

1
(·), φ+

2
(·) and φ−

2
(·) in L2(0, π). The fixed points φ0(·) ≡ 0, φ+

2
(·) and φ−

2
(·) are unstable

and the attractor consists of the unstable manifolds for these fixed points along with the
stable fixed points φ+

1
(·) and φ−

1
(·).

Figure 2 is a schematic of the global attractor. However, for certain initial conditions
trajectories are pushed rapidly towards the unstable zero fixed point before “transitioning”
to one of the stable fixed points φ+

1
(·) or φ−

1
(·). This is similar to the previous ODE example

except for the fact that this system is not chaotic. However, if one uses standard simulation
schemes to investigate the dynamic behavior of this system it is easy to obtain misleading
results.

Consider the case where the initial function is given by φ(x) = 1.5 sin(3x). Using the
MatlabTM routine pdepe to simulate (2.7)-(2.9) on the interval 0 < t < 8, yields the solution
shown in Figure 3.

It appears that by t = 2 the solution has “converged” to the zero steady state solution.
However, since the theorem above tells us that this fixed point is unstable we know that
this is unlikely. Indeed, if one continues to run the simulation to t = 16 we observe that
the solution actually “transitions” to the stable fixed point φ−

1
(·). This is shown in Figure

4 below. This is also clearly demonstrated in Figure 5 and Figure 6 which contain the plots
of the L2 norms of the solution on the intervals [0, 8] and [0, 16], respectively.

In more complex problems one does not always have the type of qualitative information
that is conveniently available for the Chaffee-Infante equation. As illustrated by this ex-
ample, it is not always clear when a particular numerical solution is producing the proper
asymptotic results. Even if the algorithm does eventually capture the correct limiting
behavior, it is not obvious how long one must run the simulation to see this result. There-
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Figure 2: Global Attractor for the Chaffee-Infante Equation
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Figure 3: z(t, x) on 0 < t < 8

fore, it is important to devise numerical methods that can help predict when a simulation
has “converged” to the correct asymptotic behavior. Equally important is the ability of an
algorithm to generate and evaluate secondary information that might indicate when it is
unlikely that an algorithm has “converged” to the correct asymptotic behavior. Although
this is a difficult problem for general systems, in certain cases sensitivity analysis can be
helpful in dealing with this issue.

2.3 Boundary Sensitivity for the Chaffee-Infante Equation

Here we consider the sensitivity of the Chaffee-Infante equation with respect to the boundary
condition. In particular, we replace the boundary condition (2.9) with the non-homogenous
Dirichlét boundary condition

z(t, 0) = q = z(t, π), (2.10)

where q is a “small” number. It can be shown that the Chaffee-Infante equation is highly
sensitive to changes in the boundary conditions and this allows us to consider the sensitivity
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Figure 5: L2 norm of z(t, ·) on 0 < t < 8

variable

s(t, x) ,
∂z(t, x, q)

∂q
|q=0 =

∂z(t, x, 0)

∂q

to analyze this sensitivity near q = 0. The sensitivity s(t, x) satisfies the linear boundary
value problem

st(t, x) = sxx(t, x) + λ(s(t, x) − 2[z(t, x)]s(t, x)), 0 < x < π, t > 0, (2.11)

with initial condition
s(0, x) = 0, 0 < x < π (2.12)

and boundary conditions
s(t, 0) = s(t, π) = 1, t > 0. (2.13)

This sensitivity provides considerable insight into the long-term behavior of the solution
to the Chaffee-Infante equation. First note that if the solution z(t, x) → φ̂(x) and φ̂(x) is a
stable equilibrium state, then one would expect that the sensitivity s(t, x) would approach
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Figure 6: L2 norm of z(t, ·) on 0 < t < 16

a steady state ŝ(x) satisfying

0 = s′′(x) + λ(s(x) − 2[φ̂(x)]s(x)), 0 < x < π,

with boundary conditions
s(0) = s(π) = 1.

In particular, one would have lim
t→+∞

‖s(t, ·)‖L2 → ‖ŝ(x)‖L2 → c where c is a constant.

This is illustrated in Figure 7 and Figure 8 below. Observe that even though the solution
z(t, x) appears to have “converged” to the fixed point φ0(x) = 0 by t = 2, and seemingly
remains at zero for 2 < t < 8 (recall the qualitative information in Figure 3 and Figure
5), the sensitivity s(t, x) is growing at an exponential rate on the entire interval [0, 8] as
shown in Figure 7, Figure 8 and is best observable in Figure 9. Moreover, when the solution
transitions to the stable fixed point φ−

1
(·) at t ≈ 9 the sensitivity is maximized and then

converges to a (small) steady state as expected. If one compares Figure 8 with Figure 6
above, then it is clear that this sensitivity provides insight into the transition.
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Figure 7: s(t, x) on 0 < t < 16
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The most important observation about the numerical results here is that even on the
“short” time interval 0 < t < 8, when the numerical solution z(t, x) appears to have
stabilized at zero, the sensitivity indicates otherwise. In particular, in Figure 9 below we
see the exponential growth of s(t, x) on [0, 8] and at t ≈ 7 the norm of the sensitivity
is of the order 109. Thus, even on the short time interval [0, 8] the sensitivity provides
a clear indication that the solution z(t, x) has not stabilized at a fixed point and that
it is unlikely that the numerical simulation is ”converged”. As previously noted, this
insight can be used to turn on feedback controllers to prevent transition. Perhaps even
more importantly, sensitivity analysis of this type can be used to help evaluate numerical
simulations in problems where little is known about the actual asymptotic behavior of the
system.
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Figure 9: L2 norm of s(t, ·) on 0 < t < 8
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3 Conclusions and Future Work

In this short report we presented two examples to illustrate how time varying sensitivity
analysis can be used for control and to provide insight into the validation of numerical
simulations in nonlinear systems. These ideas have also been applied to a wide variety of
reaction-convection-diffusion systems, and a complete paper will appear in the future. We
note that many convection-diffusion problems, such as Burgers’ equation, show extreme
sensitivity to boundary perturbations, and sensitivity analysis for these systems has pro-
vided amazing insight into the asymptotic behavior of numerical solutions (see [1], [2], [3],
[5], [6], [7], [8], [12], [13], [14], [15], [11], [16], [17], [20], [21] and [22]). Problems of this type
are infinitely sensitive to small parameter changes and can have a dramatic impact on the
convergence of optimal control and design algorithms.

We note that although the numerical results here provide considerable evidence that
time varying sensitivities can play an important role in control design and analysis, consid-
erable work needs to be done to place these ideas on a mathematically rigorous foundation.
We have some theoretical results for parabolic dissipative systems similar to the Chaffee-
Infante equations. However, much work remains to be done. Finally, it is clear that in
order to implement some of these ideas, one needs to have some indication of which pa-
rameters (modeled or un-modeled) are important to use in the sensitivity analysis. We are
currently looking into using Fisher information theory as a mechanism to identify these
crucial parameters.
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